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S H O C K - W A V E  S T A B I L I T Y  F O R  O N E  M O D E L  

O F  R A D I A T I O N  H Y D R O D Y N A M I C S  

A.  M .  B l o k h i n  a n d  Y u .  L. T r a k h i n i n  UDC 533.6.011.72 : 551.52 

Various models of radiation hydrodynamics (including the models considered by Anile et al. in [1-4]) are 
widely used to describe real processes in some fields of physics such as astrophysics, cosmology, and plasma 
physics. A mathematical  model of radiation hydrodynamics is usually a system of quasi-linear differential 
equations in the form of conservation laws (i.e., in divergent form) describing the interaction between a 
continuous medium and radiation [1]. 

In the case of a motionless continuum (precisely this case is considered herein), the equations of 
radiation hydrodynamics describing radiation propagation in the medium are derived, as is known, from 
the equations of transfer by the usual physical reasoning [2]. The resulting problem of closure is solved by 
introducing the Eddington factor (a thermodynamic approach to introducing this factor is described by Anile 
et al. in [2-4]). 

In this paper, according to the approach of [5], we consider the stability of strong discontinuities (by 
analogy with gas dynamics,  we call them shock waves) in a model of radiation hydrodynamics. 

1. R a d i a t i o n  H y d r o d y n a m i c s  E q u a t i o n s  a n d  T h e i r  S y m m e t r i z a t i o n .  Following [1, 2], we 
write the system of equations of radiation hydrodynamics in the form of laws of conservation of "mass" 
and "momentum" for the radiation energy: 

OJ/Ot + divH = -poae( J - B); (1.1) 

OH/Ot  + div:K = -p0zeH. (1.2) 

Here J is the radiation-energy density; H = (H 1, H 2, Ha) * = JA = J(A 1, A 2, A3) * is the radiation-energy 
flux (the asterisk means transposition); X is the radiation stress tensor with the components 

g ij = J{6iJ~ol /3 + ~;2AiAi}, i , j  = 1, 2,3; (1.3) 

~1 = 1 - ~; ~2 = ~2/~; ~ = ~o(A) = (2 - v ~ -  3A) is the modified Eddington factor [2]; )~ = IA[2; [A[ 2 = 
(A, A); ( , ) is the scalar vector product; p0 is the density of the continuous med ium through which radiation 
propagates; ze is the absorption coefficient [1, 2] (below, without loss of generality, we assume that  p0ze -  1); 
B = B( t ,  x) is a source function; x = (x 1, x 2, x3); x k (k = 1, 2, 3) are the Cartesian coordinates; the speed of 
light is considered equal to unity. By virtue of this, the inequalities [1, 2] 

0 < A < 1 (1.4) 

are valid for the parameter  A. Equations (1.1) and (1.2) can be regarded as a system for determining, for 
example, the components  of the vector of the unknowns 

(') U =  H " 

Let us consider the question of symmetrization of Eqs. (1.1)-(1.2), i.e., the possibility of writing them as 
a symmetric t-hyperbolic (by Friedrichs) system (the symmetrization problem for the equations of continuum 
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mechanics was considered in detail by Blokhin [5, 6]). As is known, when there is an additional conservation law 
for some system of conservation laws, the symmetrization problem is solved fairly simply (the symmetrization 
scheme for this case is described in detail [5, 6]). In our case, we shall follow this scheme [although an additional 
conservation law for system (1.1) and (1.2) is unknown]. We assume that the entropy law [1-4] is valid for 
Eqs. (1.1) and (1.2), i.e., that  there are smooth functions (I)(a) = (I)(a)(U), ra = ra (U) ,  a = 0,3, and g = g(U) 
such that  the relation 

r0 -~-+divH +~ ,-~/-+div~ =-r0(J-B)-(r,  It)=g= 0---/-+div~ (1.5) 

holds for any smooth solution of system (1.1) and (1.2). Here r = (r l ,r2,r3)*;  ~ = (~(1),~(2),~(3)),; the 
functions ~(~), r~, (a  = 0, 3), and g depend in a smooth manner  on the components  of the vector U (the 
functions r~ (a = 0-~) are also called canonical variables or Lagrangian multipliers [5, 6]). 

We define the product ive functions [5, 6] L and M (k) by the formulas 

3 

L = r 0 J + ( r , H ) - ( I  )(~ M ( k ) = r o H k + ~ ' ~ r i K i k - ~  (k), k = l ,  2,3. (1.6) 
i=1 

According to the ideas given by Anile et al. in [1], we assume that  

L = - L ( G ) r o ,  M (D = L(G)rk, k = 1, 2, 3. (1.7) 

Here L = s is a function to be defined, and G = Irl 2 - r 2. It follows from (1.5) and (1.6) that  

3 

d L =  Jdro + (H, dr), d M  (k) = Hkdro + ~ Kikdr i ,  
i=1 

i.e., taking assumption (1.7) into account, we have 

J = OL/Oro = 2r2o Z' - [,, L' = d[ , /da;  (1.8) 

H k = OL/Ork = OM(k)/Oro = - 2 f o r k [ l ,  k = 1, 2,3; (1.9) 

K ik = OM(k)/Ori = 2rirkL'  + 1,6 ik, i, k = 1, 2, 3. (1.10) 

Next, we assume that  
r0 = cold, r = H / d ,  (1.11) 

where the parameters co and d satisfy the obvious relation 

J2X = d2G + c 2 (A = [A[ 2 = [H[2/J2). (1.12) 

Comparing formulas (1.3) and (1.10), we obtain successively 

2 [ / =  ~2/Jd2;  (1.13) 

I, = ~01J/3. (1.14) 

From (1.9), (1.11), and (1.13) we find 
co = -J/~o2.  1.15) 

With this choice of L', L, and co, relation (1.8) holds identically. At the same time, taking into account (1.12), 
from (1.13)-(1.15) we have an ordinary differential equation for the unknown function L: GL' = -2L,. We 
assume that  one of its solutions is L = 1 /G  2. Since 

G = [r[ 2 -  r02 = 4 J2c21 
3 d2~22 < O, 

the parameters G and d are given by the formulas 

= - = - -  . (1.16) 
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With this choice of G, d , / , ,  and ra (a = 0---~), the functions q~(~) (a = 0-~) and g take the form 

4 2 J 
~(0) = ~Jr0~x,  ~(k) = _ _ j r k ~ l ,  k =  1,2,3, g = -=-----(c21J-B). (1.17) 

3 

Formulas (1.16) and (1.17) complete the description of the additional conservation law. 
Thus, the canonical variables ra (a = 0--~) and the productive functions L and M (k) (k = 1, 2, 3) are 

defined. Then, following [5, 6], we write the initial system of equations of radiation hydrodynamics (1.1) and 
(1.2) as the following symmetric t-hyperbolic (by Friedrichs) system: 

3 
A (~ + ~ ]  A (k) 0 R  + D R  = F. (1.18) 

Ot Oz k 
k = l  

Here A (0} = (Lr~r~)=  (4/G4)(a(a~ A {k) = \,,-r~rz]{~(k) ~ = (4/G4)(a(~);  (ot, fl = 0,3; k = 1, 2, 3), a~ 0) = 

-3r0(G -I- 2r02); a! 0) = ro(G - 6r2); a~ ) = a!00) = ri(G -t- 6r02); al O) = a~.? ) = -6ror i r j ;  a~ko } = rk(G + 6r02); 

a(o  ) = , @  = ' @  = "S,-(k) = ( i , j  = 1-~); R =  (ro,ry,r2,ra)'; 
F = (B, 0, 0, 0)*; D = ddiag (-~22, 1, 1, 1) is a diagonal matrix; A(a) are symmetric matrices; A(~) = (A(~)) * 
(a = 0--,-~); and A(~ > 0 if the natural condition J > 0 is satisfied. 

Going back from the vector R to the vector U, symmetric system (1.18) can also be rewritten. Actually, 
since Lit = U and dLR = A(~ = dU, i.e., dR = (A(~ it follows from (1.18) that 

3 
B(~ 0- v -I- Z B(k) 0U + B(~ = B(~ (1.19) 

Ot Ox k 
k = l  

where B (~ = B(~ = re(A(~ m = -4roG1/G2;  G1 = 2r 2 - G ;  B (k) = B(k)(U) = ( l /m)B(~ (~ 
(k = 1, 2, 3); and B (a) (a = ~ are symmetric matrices with B (~ > 0. 

2. Var ious  R e p r e s e n t a t i o n s  of S y s t e m  (1.1) and  (1.2).  C o n d i t i o n s  on S t r o n g  Discon t inu i ty .  
In system (1.1) and (1.2) we make the substitution 

U = U'e -t .  (2.1) 

Here 

is the vector of the new dependent variables. Omitting the primes, for new variables we obtain 

cgJ/Ot + d ivH = etB; (1.1') 

OH~Or + d i v X  = 0.  (1 .2 ' )  

Let B - 0. Then system (1.1') and (1.2') has the constant solution 

I:I ' 

where I:I = (//1 / / 2 / / 3 ) , ;  j and //k (k = 1, 2, 3) are constants. By virtue of (2.1), for B - 0 initial system 
(1.1) and (1.2) has the solution 

U = l:Ie -t .  (2.2) 

In what follows, we need a nondivergent representation of the initial system of equations of radiation 
hydrodynamics. We introduce the "pressure" 

p- -  (1/3)Jc21. (2.3) 

Then, we have 

dp = (1 /3 ) ! z ldJ  - (J/~r)(A, dA) (cr = x/4 - 3~). (2.4) 
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In view of (2.3) and (2.4), system (1.1') and (1.2') takes the form (B = 0) 

d" p 
d---t- + pdivA + 1--pdiva (~A) - p~2(A, V)$ = 0; (2.5) 

j d ' A  
dt + Vp - Adiv (p~2A) = 0. (2.6) 

Here d'/dt = O/Ot + ~2(A, •) and d"/dt = O/Ot + (1/a)(A, V). 
For system (1.1') and (1.2') we write strong-discontinuity conditions. Let the surface of a strong 

discontinuity be given by the equation 

f(t ,  x) = f( t ,  x') - x 1 = 0, x' = (x 2, x3). (2.7) 

Then strong-discontinuity relations (2.7) take the form [7] 

3 

ft[J] - [ H  11 + ~ fzk[H k] = 0; (2.8) 
k=2 

k=2 

where [F] is the jump of F: 

3 ] 
x I - -Jgigk  =0' i=2 ,3 ,  (2.10) 

k=2 

[F] = F + - F - ,  

[F + and F -  are the values of F to the right ( - f  --+ +0) and to the left ( - f  --~ -0 )  of the surface of 
discontinuity (2.7)]. We shall use F and Foo in place of F + and F - .  

Considering (2.8)-(2.10), we can describe the following piecewise constant solution of system (1.1') and 
(1.2') for B = 0 [piecewise smooth solution for system (1.1) and (1.2), see (2.1) and (2.2)]: for z 1 < 0 

J = J o o = c o n s t > 0 ,  H l = / : / ~ = c o n s t ,  H 2 = H  a = 0  

(for definiteness, we assume that/:/loo > 0); for x 1 > 0, 

J = J = c o n s t > 0 ,  H l = / : / l = c o n s t ,  H 2 = H  3 = 0 ,  

and, for x I = 0, equalities (2.8)-(2.10) are satisfied (provided that the discontinuity front is motionless and 
is given by the equation x 1 = 0): 

i2/1 = / : / ~  (= h) # 0; (2.11) 

[~] + h2[~2/J] = 0. (2 .12)  

Here [fi] =/~ - i5cr i5 = (1/3)J~1; i5oo = (1/3)Joo~loo; #1 = & - 1; & = V/4-  3A; A = (s = h2/j2, etc. 
By analogy with ordinary gas dynamics [5, 7], the stationary discontinuity described above is called 

a shock wave. In this case, relation (2.12) is an analog of the Hugoniot adiabat in ordinary gas dynamics. 
Rewriting relation (2.12) as 

[ J ( 5  - 2 )1 = o, (2.12') 

we treat this equality as an equation for the parameter k = Joo/J. After simple calculations, we find roots 
kl = 1 and k2 = 9/(1 + 20~oo). Thus, for 1 > q ~  > 2/5 (12/25 < A~ < 1) the radiation-energy density 
increases in going through the shock-wave front (since k2 < 1). This is also true for the "pressure" p [see 
(2.3)]. Actually, the function 

g(Y) = ~2/J = 3V/(2 + ~/4 - 3h2V 2) (Y = 1/g) 
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has the derivative g'(V) > 0. It therefore follows from (2.12) that 15 > 15~ for 1 > ~bcr > 2/5. 
Note that the relation ~5 = (k2 - 1 + 2 k 2 ~ ) / 2  = (4 - ~ ) / ( 1  + 20~r162 results from (2.12'), i.e., for 

1 > ~ > 2/5, we have 

1/7 < # < 2/5 (9/49 < A < 12/25). (2.13) 

3. L inea r i za t i on  of  t he  E q u a t i o n s  of  R a d i a t i o n  H y d r o d y n a m i c s .  Fo rmula t ion  of the  
P r o b l e m  of t he  S tab i l i t y  of  Shock  Waves .  

We consider the following constant solution of system (1.1') and (1.2') for B -~ 0: 

J 
V ----- 0 = /~/1 

0 
0 

where  j --- const > O, /:/1 __~ const (we assume, for definiteness, that f/1 > 0), and h I = / ~ l / j  < 1. Linearizing 
system (1.1') and (1.2') with respect to this solution, we obtain a linear system of equations with constant 
coefficients [see system (1.19)]: 

a.  B(~ + ~ = 0. (3.1) 
k---1 

Here the vector U consists of small perturbations of the components of the initial vector U (which is denoted 
by the same letter). 

We now determine the eigenvalues of the matrix B(1)(0) or, more exactly, A0)(O). Since B0)(U)  = 
(1/rh)B(~176 (f_I) and B(~ > 0, we have rh = re(U) > 0 (see Sec. 1). After simple calculations 
we see that the matrix AtU(u)  has eigenvalues 

4 J~1~1 
A 

4 
(2§247 + 272) 4- <76 + § 6 + 237o2§ + 11~o472}, (3.2) A1,2=3 02 , ~a,4=~-7 

where § = -]/(@2J); r l  = [-Illd; and d = ~/i4J/~2)(j@~/3)312; if ~5 > l / J~ ,  then A1,2,3,4 > 0 and if 
~5 < 1 /v~,  then )kl,2, 3 > 0 and A4 < 0. 

Note that system (3.1) can be rewritten in the form [which is easy to obtain by linearization of 
nondivergent system (2.5) and (2.6)] 

Lp - CO~lP + Cl{C2~lH 1 + ~2 H2 + ~3H 3} = 0, (3.1') 

LH 1 + boLp + bl~lp = O, LH 2 -1- ~2P .-= 0, L H  3 "4- ~3P = O. 

Here p is a small perturbation of the "pressure" [see (2.3)1; 

0 0 
= 0--7; ~ = ~ (~ = 1 ,2 ,  3); 

~ 5  
L = r + ~ 4 1 ;  

2 5 - - 1  

2(5- - 1)(4 + i - 2 a ) .  
co -- ~/~b(4 - 5-) 

cl ; c2 2 b - 1  3 &(2-&)  4 - A - 2 &  = -  = ; b 0 = - -  ; b 1 = 2  
3 5- 4 - 5 -  2 V~(~-I) 

It is evident that system (3.1') is similar to the system of acoustic equations in ordinary gas dynamics 
[5, 7]. As in gas dynamics, in our case the function p also satisfies the wave equation L 2 p -  doL~lp-  

cl {d l~p  + ~2p + ~2p} = 0, where (do = 4(5- + A - 2)/(vf~5-) and dl = blc2. Under the additional assumption 
that ~ < 2/5 (i.e., 5" > 8/5), the latter equation can be rewritten as 

{(T') 2 - (~'~)2 - ~ - ~ } p  = o, (3.3) 

where the new differential operators v' and ~ are defined as 7 = ih0w' and ~1 = ~51~ + 1527", where i50 = 
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r  - 8)/(6(& - 1)), ibl = l/v~ib0, and t32 = V~/(2(& - 1)i50). 
We linearize system (1.1') and (1.2') with respect to the piecewise constant solution described in Sec. 2. 

As a result, we have a mathematical  formulation of the problem of the stability of shock waves in the studied 
model of radiation hydrodynamics. 

Basic Problem I is to find piecewise smooth functions that are solutions of system (3.1) (for t > 0 and 
x E R 3) and of the system 

= 0 (3.4) 

+ [ ~ H  k] = 0 ,  k = 2 , 3  (3.5) 

0U a 0U 
B(~ --5/- + ~ B(k)(O~) ~xk 

k----1 

(for t > 0 and x E R3_) and satisfy the boundary conditions 

[51 ] Ft = [H1], L 4---2-g- = H 1 , F~k 

(for t > 0, x'  E R 2, and x 1 = 0) and the initial data 

x e R ~ : ,  F ( 0 , x ' ) = F 0 ( x ' ) ,  x ' E R  2 U(0, x) = U0(x), (3.6) 

for t = 0. Here F = / / 1 5 f ;  5 f ( t , x ' )  is a small displacement of the discontinuity front; and R~ = {x]x 1 X 0, 
x' E R2}; 

OOQ 
0 
0 

/2/1 = [see relation (2.11)1; 

, , 

etc. Taking into account formulas (3.2), we assume that the inequality 

~ > 1/V~ (3.7) 

is satisfied. Note that  in this case, a priori, qb~ > 2/5 and ~b < ( 4 v ~ -  1)/(20 + V~) < 2/5 < l /x/3 [see 
(2.13)]. Thus, with satisfaction of condition (3.7), all eigenvalues of the matrix A(1)(O~) are positive. Hence, 
system (3.4) does not require boundary conditions for x 1 = 0. Then, without loss of generality, we assume 
that U(t, x) = 0 for x I < 0. Similar reasoning with allowance for the inequality ~b < 1 / v ~  shows that system 
(3.1) requires three boundary conditions and one boundary condition for determining the function F(t ,  x~). 
So, there are as many boundary conditions (3.5) as are required for the discontinuity to be evolutionary [8] if 
condition (3.7), which is called the evolutionary condition, is satisfied. 

Allowing for the above remarks, we reformulate the basic problem I [with satisfaction of condition 
(3.7)]. 

Basic Problem II is to find a solution of system (3.1) for t > 0 and x E R 3 that satisfies the boundary 

(3.5') 

conditions 

Ft = #p, H l + dp = O, 

for t > 0, x' E R 2, and x 1 = 0 and the initial data 

u ( o , x )  = Uo(x), x e R~, 

f o r ,  = O.  ere ,,, = , / ; ) ) ;  

H ~'3 - ( ~ l v ) r : ~ , ~  = o 

(3.6') F ( 0 , x ' )  = F0(x') ,  x ' e  n 2 

= (58 - 8)/3~/-~; and ~ = (8 - 5&)/6@ 
4. S t ab i l i t y  of  a Shock  Wave.  We describe the process of deriving an a priori est imate of the solution 

without loss of smoothness of basic problem II in a plane case. In view of replacement (2.1), this estimate 
leads to an a priori estimate with decreasing for the solution of the mixed problem obtained by tinearization 
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of initial system (1.1) and (1.2) in the plane case (for B = 0) with respect to the piecewise smooth solution 
described above [see (2.2)]. And finally, from this estimate with decreasing follows the convergence of the 
solution of the mixed problem for linearized system (1.1) and (1.2) to a trivial solution in the norm W22(R2+) 
for t -* ~ .  

To obtain an a priori estimate for the solution of basic problem II, we construct an extended system [5] 
for determining the second derivatives of the components of the solution. The process of construction involves 
two stages. In the first stage, using system (3.1) (in the case of plane symmetry) we set up the following 
symmetric t-hyperbolic (after Friedrichs) system: 

2 B(k)0U p _ 0. (4.1) B(o) OUp + ~ p Ox k _ 

P Ot k=l 
Here U ,  = (7"2U* r~lU*, T~2U*,~12U*, e~lg2e U*,g2e2U*'*) and B (~) = blockdiag (B (a) B ( a ) B ( " ) B ( a ) , B ( " ) B  (~)) 
(~ = 0 , ~  are block diagonal matrices. 

Writing the energy integral for symmetric system (4.1) in differential form [5] and integrating it over 
the domain R 2, we obtain 

s 
dt -- ,~1=o 

R 1 

where 

/0(t) = ~(S(p~ Up)dx; x - -  (xl,x2); R 2 - -  {XlX 1 > 0 ,  x 2 E R1}. 

In deriving (4.2) we assume that [Up[ ~ 0 for x I ---* cc or Ix2[ ---* oo. 
Estimating the second term in equality (4.2) by means of boundary conditions (3.5') and system (3.1') 

(in the case of plane symmetry) ,  for x 1 = 0, we have 

s Io(t)- i l  i P] dx2 ~ O, (4.3) 
dt ~ ,~1=0 

R1 

2 2 2 where M1 > 0 is a constant and P = p2tt + pt21 + pt2z2 + pxlz 1 + Pxix 2 + pz2z 2. 
Let us go to the second stage of constructing the extended system. We rewrite Eq. (3.3) for the case 

of plane symmetry: 

(L~ - L 2 - L2)p = 0. (4.4) 

Here L1 = r ' ,  L2 = {~, and L3 = {2. If thefunction.fl.p(t, x) satisfies Eq. (4.4), the vector W = (Y~,Y~,Y~)* 
[Yt = L1Y, Y2 = L2Y, Ya = LaY, Y = Vp, and V = (L1, L2, La)*] satisfies a system of the form [5, 8] 

{ALl -/}L2 -- CLa}W = 0, (4.5) 

where 

A =  L X iN ; D =  X f-. ~ ; C =  i N - N  s ; 
:M: - i N  X - i N  ~ - L  X L )v[ 

X, L, :M, and :N are now arbitrary Hermitian matrices of order 3. Reverting to the differential operators r,  
~1, and ~2 in system (4.5), we obtain 

{DT--  1~1--PlC'~2} w = 0  ( o = Pl ^ P2 q 3 ~  1)'~ (4.6) 
V0Z--(A + M/)) ,  M - /)1 -- 2(o" -- 1) (< /" k 
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Here 

Note that the following relationships are valid [5, 8]: 

A = T~{I2• h = T~ - 1  0 ~ ' = T ~ { (  -10 0 ) x H }  T ~  (4.7) 

(10_1 ( ) 
---=1 0 - 1  0 xI3; ~ =  ~E-3v[ - L - i N "  

T ~  0 - 1  0 - L + i N "  X + ~  
1 0 1 

I 2 x H  is the Kronecker product of matrices/2 and H, etc.; I2 is a unit matrix of order 2, etc. By virtue of 
(4.7), we have 

D =  -:--T~ - M  1 
po 

To find boundary conditions for system (4.6), following [5], we find the scalar product of system (3.1') 
(in the case of plane symmetry) and the vector (% -clc2% 0, 0)*. Considering the obtained expression for 
x 1 = 0, by means of boundary conditions (3.51), we have the relation 

m(L  2 + L2 )p+ nL22p-TL1L2p= O ,  x 1 = 0 ,  (4.9) 

where m = (55"-8)(13 - 7&)/(27V/~&), n = ( 5 5 . - 8 ) ( 5 . -  1)/(9vf~&), and 7 = (55. - 8)/(3v/35.) �9 
Allowing for (4.4) and (4.9) for x ~ = 0, as boundary conditions for system (4.6) we use the expressions 

[5] LI(LIp) - L2(L2p) - La(Lap) + o~{LI(L2p) - L2(Llp)} = O, La(L2p) - L2(Lap) = 0, and LI(L2p) - 
((m + n)/7) L2(Lzp) - (m/7)  L3(Lap) = 0, which can be rewritten as 

Here 

A1Y1 + BIY2 + CIY3 = 0. (4.10) 

(1 0 / . 0) 00 
A I =  0 0 0 , t31= 0 0 - 1  " C 1 =  0 1 0 m + n  r n + n  ' m , -- 5--25" , 

0 1 0 0 0 0 0 - - -  7 

( ZI ) - - T o W ,  whereZi-=  ( Z l )  a n d Z i i - -  ( Z 3 )  [Zk(k-= l - -~)a re  and a > 1 is a constant. Let Z = Zn Z2 Z4 

vectors of dimension 3] Since Y1 = (v~/2)  (Zl + Z4), Y2 = - v ~ Z 2  = - v ~ Z 3 ,  and Y3 = (v~/2)(Z4 - Zl), 
conditions (4.10) can be written as 

Zi = GZm (4.11) 

Here 
/ G1 \ 

G C1). 

Let all eigenvalues of the matrix G lie strictly in the left half-plane, i.e., Re Ai(G ) < 0 (j = ~,6). 
The latter is valid for the inequalities m > 0 and n > 0, which are satisfied by virtue of (2.13), because 
8/5 < & < 13/7. We now set up the Lyapunov matrix equation 

G*H + HG = -Go  (4.12) 

to find the matrix H, which appears in formulas (4.7). As is known [9], Eq. (4.12) has the unique solution 

y =  --H1 H2_ >0 ,  HN1 = H ; ,  H--3 =H--~ 
H~ H3 
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for any real symmetric positive-definite matrix Go. In this case, the matrix H is also real symmetric, and 
matrices X, L, ~ ,  and N are found as follows: 

1 N _  1 1 
X = ~ I ( y , + H 3 ) ,  3 ~ = ~ (  3 HI), L = - - ( H 2 2  +H--~)' i N ' = ~ ( Y ~ - H 2 ) .  

Since H > 0 we have D > 0 by virtue of (4.8). 
For system (4.6), we write the energy integral in differential form and integrate the resulting identity 

over the domain R 2, assuming that  IWl ---* 0 as z 1 ~ cr or Ix21 ~ r As a result, we have 

d 
+ : 0 ( , , ( , )  : (4.13) 

R 1 R~. 

According to (4.7) and (4.11), the quadratic form is 

= (G0ZH, Zn) > ( h w ,  w )  ~1=o 0. (4.14) 

Since 

we have 

ZlI = ~ Y1 + Y3 ' 

(eoZii, ZIi)[xl=o > i2{(L2p)2 +(ili2p)2..]_(ili3p)2..~_(L2p)2 +(5253p)2_{_(/2p)2} xl--o > /~2P  xl__o, (4.15) 

where 3/2 and 3//2 > 0 are the constants specified by the norm of the matrix Go. Taking (4.14) and (4.15) 
into account, from (4.13) we have 

d --  / P ~l=0dx 2 d-'t I i ( t )  + M2 < 0. (4.16) 
R 1 

Summing inequalities (4.3) and (4.16) and bearing in mind that  a proper choice of the matrix Go [i.e., 
of the constant/142 (4.15)] makes it possible to attain positive definiteness of the form 

(M2 - M1)PI~I= 0, (4.17) 

we obtain 

d 
d-'t/2(t) < 0, t > 0 (I2(t) = Io(t) + II(t)),  

which leads to an a priori est imate for the second derivatives of the solution of the basic problem II: 

/2(t) < /2(0) ,  t > 0. (4.18) 

To estimate the solution U itself and its first derivatives, we set up an extended system of (4.1), 
(4.6), and the following system (which is a set of obvious relations): OVp/Ot - vVp = 0, where Vp = 
(U*, TU*, ~IU*, (2U*)*. Writing the energy integral for this system and taking (4.18) into account, we obtain 

d ~I(t)< U ff (TV,,V,)dx (I(t)= I2(t)+ ff (V,,Vp)dx). (4.19) 

Estimating the right-hand side of (4.19) by the Holder inequality, we arrive at the inequality 

-~ x(t) < 2(I(0)I(t))l/:,  t > 0, 
dt 

from which follows the desired a priori estimate for the solution of basic problem II: 

I(t) < I (O)( t+l )  2 , t > 0 .  (4.20) 
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Finally, for the solution of basic problem II, from (4.20) follows the estimate 

IIU(t)IIW~(R2+)<<.Ma, 0 < t <~ T < cr (4.21) 

where M3 < cr is a positive constant specified by T. Note that, as in [5, 8, 10], for the function F(t ,x  2) we 
can derive the estimate 

IIFIIw~((o,T)• <~ M4, (4.22) 

where M4 < cr is a positive constant specified by T. In deriving estimate (4.22) we use the fact that quadratic 
form (4.17) is positive definite. 

Estimates (4.21) and (4.22) show that basic problem II in the case of plane symmetry is well posed. 
Note also that, using another (more cumbersome) procedure of constructing an extended system [5, 11], one 
can also obtain a priori estimates of the solution of basic problem II in the general (three-dimensional) case. 

With allowance for substitution (2.1), estimate (4.20) takes the form 

I(t) < I(O)(t + 1)2e -2t, t > 0, (4.23) 

where the vector U, which appears indirectly in the formula for the aggregate I(t),  now denotes the vector of 
small perturbations of the solution of the mixed problem for initial linearized system (1.1) and (1.2). Then it 
follows from the estimate with decreasing (4.23) that the solution U(t, x) converges to the trivial solution in 

W, 2~~ ~ for t ~ oo, i.e., l i m  IlU(t)llwg(R .)= 0. the norm 2t-,+) 

Thus, shock waves are stable in the investigated model of radiation hydrodynamics. 
The authors are grateful to Professor A. M. Anile and Doctor V. Romano from the University of 

Catania (Italy) for fruitful discussions. 
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